
Brazilian Journal of Animal Science
ISSN 1806-9290 
www.rbz.org.br

R. Bras. Zootec., 48:e20180243, 2019
https://doi.org/10.1590/rbz4820180243

Breeding and genetics
Full-length research article

Polymorphism of the BCO2 gene 
and the content of carotenoids, 
retinol, and α-tocopherol in the 
liver and fat of rabbits

ABSTRACT - The study was carried out to evaluate the effect of AAT-deletion 
mutation at codon 248 of the BCO2 gene on the content of lutein, β-carotene, retinol, 
and α-tocopherol in the liver and fat of crossbred rabbits. The experimental animals 
comprised 90 rabbits, produced by reciprocal crossing between ins/del heterozygous 
parents of Flemish Giant, New Zealand Red, and Termond White breeds. All rabbits in 
the litter were genotyped, given the same diet, and finally slaughtered at 140 d of age. 
It was found that regardless of the mating scheme employed, all del/del homozygotes 
had the yellow fat trait, whereas heterozygous and homozygotes animals without the 
AAT deletion (ins/ins) developed white fat. Lutein concentration in fat was over 13-fold 
higher in rabbits carrying a homozygous AAT-deletion than in the remaining animals.  
A codon deletion in the BCO2 gene also contributes to an increase in the concentrations 
of β-carotene and α-tocopherol in the adipose tissue of rabbits. However, no differences 
were observed in the content of the analyzed components between heterozygous and 
homozygous rabbits without the deletion.
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Introduction

Carotenoids can be divided into hydrocarbon carotenoids, i.e., carotenes (e.g., β-carotene and 
lycopene) and oxygenated carotenoids, i.e., xanthophylls (e.g., lutein and zeaxanthin). Carotenoids are 
cleaved by homologous enzymes BCO1 (β-carotene 15,15'-monooxygenase 1) and BCO2 (β-carotene 
9',10'-oxygenase). BCO2 is characterized by broader substrate specificity than BCO1. BCO1 is a 
cytoplasmic protein, and BCO2 is found in the mitochondria (Amengual et al., 2011). Provitamin A 
carotenoids, such as β-carotene, α-carotene, and β-cryptoxanthin, may be cleaved by either BCO1 or 
BCO2. However, the activity of BCO2 is higher towards non-provitamin A carotenoids such as lycopene, 
lutein, and zeaxanthin (Mein et al., 2011). BCO2 cleaves carotenoids, yielding apo-10’-carotenals and 
ionones, whose functions have not been fully elucidated to date (Lietz et al., 2012).

In mammalian species such as cattle, sheep, and mice, mutations in the BCO2 gene impair the function 
of protein that breaks down non-provitamin A carotenoids (Tian et al., 2010; Våge and Boman, 2010; 
Amengual et al., 2011). As a result, carotenoids are stored in animal tissues, giving them a yellow color. 
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A carotenoid-rich diet intensifies yellow pigmentation (Kotake-Nara and Nagao, 2011). In sheep, yellow 
fat is an autosomal recessive trait, whereas in cattle, the inheritance pattern of the yellow fat phenotype 
is far more complex (Tian et al., 2012). In rabbits, the presence of yellow fat is a simple Mendelian 
recessive trait. We compared the phenotypes – without genotyping – of New Zealand Red rabbits and 
found that yellow-fat rabbits, in comparison with their white-fat counterparts, have higher levels of 
lutein, β-carotene, retinol (one of the major forms of vitamin A), and α-tocopherol (the most biologically 
active form of vitamin E) in perirenal fat and higher lutein concentrations in the liver (Strychalski et al., 
2016). We reported for the first time the presence of a homozygous AAT in-frame deletion at codon 
248 of the BCO2 gene in three yellow-fat rabbits (Strychalski et al., 2015). This mutation resulted in the 
absence of asparagine in the BCO2 enzyme.

The relationships between genotypes associated with the AAT in-frame deletion in the BCO2 gene 
and the presence of biologically active compounds in selected tissues of rabbits have not yet been 
determined. The current study was carried out to evaluate the effect of BCO2 genotypes on the content 
of lutein, β-carotene, retinol, and α-tocopherol in the liver and fat of crossbred rabbits.

Material and Methods

The animal protocol used in this study was approved by the local Institutional Animal Care and Use 
Committee in Olsztyn, Poland (Latitude: 53°74'84" N; Longitude: 20°44'73" E). The experiment 
was conducted in accordance with EU Directive 2010/63/EU on the protection of animals used for 
scientific purposes.

The experimental animals comprised 90 rabbits, produced by reciprocal crossing between ins/del 
heterozygous parents of Flemish Giant (FG), New Zealand Red (NZR), and Termond White (TW) breeds 
(Figure 1). BCO2 indel genotyping employed in the study was performed according to the PCR-RFLP 
method as described previously (Strychalski et al., 2015). The gene variant with the AAT in-frame 
deletion at codon 248 of the BCO2 gene is subsequently referred to in the text as “del”, and the variant 
without deletion is referred to as “ins”. One rabbit of each genotype (ins/ins, ins/del, del/del) was 
selected from every litter, maintaining a sex ratio.

Rabbits were kept in individual wire-mesh flat-deck cages (0.5 × 0.6 × 0.4 m) in a closed experimental 
pavilion. All animals received the same pelleted diets for domestic rabbits (Table 1). The experiment 
began at 45 d of age (weaning) and ended at 140 d of age.

Rabbits were fasted for 24 h, weighed, and sacrificed in accordance with the recommendations for 
euthanasia of experimental animals (they were stunned and bled, and the entire operation took 

NZR - New Zealand Red rabbits; FG - Flemish Giant rabbits; TW - Termond White rabbits; ins - gene variant without AAT-deletion at codon 248 
of the BCO2 gene; del - gene variant with the deletion.

Figure 1 - Mating scheme used to produce 90 rabbits of different genotypes at codon 248 of the BCO2 gene.

5♂NZR ins/del × 5♀FG ins/del
5♀NZR ins/del × 5♂FG ins/del

5♂NZR ins/del × 5♀TW ins/del
5♀NZR ins/del × 5♂TW ins/del

5♂FG ins/del × 5♀TW ins/del
5♀FG ins/del × 5♂TW ins/del
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BCO2 genotyping
selection for research

BCO2 genotyping
selection for research

BCO2 genotyping
selection for research

10 NZR × FG ins/ins
10 NZR × FG ins/del
10 NZR × FG del/del

10 NZR × TW ins/ins
10 NZR × TW ins/del
10 NZR × TW del/del

10 FG × TW ins/ins
10 FG × TW ins/del
10 FG × TW del/del
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approximately 2 min). After slaughter, the animals were skinned and eviscerated. Approximately 20 g 
samples of liver tissue and perirenal fat were collected for chemical analyses, and samples of perirenal 
fat were subjected to colorimetric analyses.

Rabbit carcasses were divided into “white fat” and “yellow fat” based on a visual assessment  
confirmed by colorimetric measurements (L*, a*, b*) performed with a portable MiniScan XE Plus 
system (HunterLab).

All chemical analyses were performed in duplicate. 

Feed samples were assayed for the content of nutrients, by standard methods; dry matter, in a laboratory 
drier at 103 °C; crude ash, by the sample mineralization in a muffle furnace (Czylok, Poland) at 600 °C; 
total nitrogen, by the Kjeldahl method in a FOSS TECATOR Kjeltec 2200 Auto Distillation Unit; ether extract,  
by Soxhlet extraction in a FOSS SOXTEC SYSTEM 2043; neutral detergent fiber (NDF), according to the method 
proposed by Van Soest et al. (1991); acid detergent fiber (ADF), according to the official methods of analysis 
of Association of Official Analytical Chemists (AOAC, 2006) – these two (NDF and ADF), in a FOSS TECATOR 
Fibertec 2010 System; and gross energy, by using a bomb calorimeter (IKA® C2000 basic, Germany).

The levels of retinol and α-tocopherol in feed were determined in accordance with Polish Standards 
(Polish Standard PN-EN ISO 14565, 2002; Polish Standard PN-EN ISO 6867, 2002). Analytical samples 
of feed were saponified (50% KOH in ethanol w/v, 90 °C, 30', reflux condenser) and extracted with 
ethanol and petroleum ether. The extracts (upper fraction – hydrophobic ether extract; lower fraction 
– hydrophilic) were rinsed with 10% (w/v) aqueous solution of NaCl, then with distilled water, 
dehydrated with anhydrous sodium sulfate, and evaporated to dryness in the presence of nitrogen 
(N2). The residue was dissolved in 96% ethanol to determine the content of tocopherols and retinol, 
and in n-hexane to determine the content of β-carotene and lutein. The samples were saponified at 
high temperature, which could contribute to the degradation of vitamin A, vitamin E (including retinol 
and α-tocopherol), and carotenoids. However, according to Rodriguez-Bernaldo de Quirós and Costa 
(2006), high-temperature saponification facilitates the separation of analytes in samples with high lipid 
content (such as liver and adipose tissues) without the need for modifications in the chromatographic 
system (type and quantity of the mobile phase).

The concentrations of retinol and α-tocopherol in animal tissues were determined as described by 
Högberg et al. (2002) and Xu (2008). One-gram samples of liver and adipose tissue were homogenized 
with 1.2 cm3 of 20% ascorbic acid in H2O (Ultra-Turrax T25 homogenizer, IKA Janke & Kunkel, Germany) 
and saponified (375 g KOH, 750 cm3 H2O, 450 cm3 methanol, 80 °C, 15'). Ethanol (35% v/v) and NaCl 
(10% w/v) were added to cooled samples, which were extracted twice with n-hexane (2 × 4 cm3) and 
centrifuged (MPW - 350R centrifuge, Poland, 1500 g, 15’). We collected 3 and 4 cm3 of the supernatant, 
successively. The extracts were combined and evaporated under a nitrogen flux until drying. The 
residue was dissolved in 1 cm3 of 96% ethanol to determine the content of tocopherols and retinol, and 
in n-hexane, to determine the content of β-carotene and lutein.

Table 1 - Chemical composition and energy content of the feed
Item
Dry matter (%) 88.94
Crude protein (%) 16.75
Ether extract (%) 3.04
Crude ash (%) 6.83
Neutral detergent fiber (%) 27.91
Acid detergent fiber (%) 18.63
Lutein (mg/kg) 37.70
β-carotene (mg/kg) 20.07
Retinol (IU/kg) 9174.00
α-tocopherol (mg/kg) 32.36
Gross energy (MJ/kg) 17.28
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The concentrations of retinol and tocopherols in feed and animal tissues were determined by 
reversed-phase high-performance liquid chromatography (SHIMADZU-Japan; HPLC system), on a 
Nucleosil C18 column, with methanol/water (95:5, v:v) as the mobile phase, a UV detector (326 nm 
for retinol) and a fluorescence detector (excitation – 295 nm, emission – 330 nm for tocopherol). The 
levels of retinol and α-tocopherol were measured by comparing their peak areas with those of external 
standards (Sigma-Aldrich; Germany: (±)-α-tocopherol – No Cat. T3251, retinol - vitamin A – alcohol - 
No Cat. R7632; α-tocopherol recovery – 96±2.8%, retinol recovery – 89±4.5%). 

The hexane extract of carotenoids was filtered through a 22 µm PTFE syringe filter (30-SF-02 
CHROMACOL Ltd.) and analyzed by RP-HPLC (SHIMADZU), column: Gemini 5 μm (Phenomenex),  
C18, 110Å, 250×4 mm; mobile phase: methanol:tetrahydrofuran (95:5 v/v) (HPLC grade SIGMA-ALDRICH); 
flow rate: 1 cm3 min−1, detector: UV-vis 450 nm; loop: 20 µL. External standard: β-carotene (β-carotene, 
provitamin A - No Cat. C4646; β-carotene recovery – 85%±1.9%) and xanthophyll (xanthophyll – lutein, 
α-carotene-3,3'-diol; No Cat. X6250; xanthophyll recovery – 86±6%) standards from Sigma-Aldrich 
(Germany) (Rodriguez-Bernaldo de Quirós and Costa, 2006).

In the tables, data are expressed as means±standard deviations (SD). Medians, 25th and 75th 
percentiles, and adjacent and outside values are presented in boxplots combined with stripcharts. The 
results were processed statistically using least squares means in GLM procedures. For comparison of 
specific (n=10) and combined (n = 30) data, we used the same model:

Yijk = µ + αi + βj + αiβj + εijk,

in which µ is the general mean, αi is the effect of BCO2 genotype, βj is the effect of sex, αiβj is the interaction 
effect between genotype and sex, and εijk is the random error. The significance of the differences among 
groups was determined with Duncan’s multiple range test. Analyses did not reveal significant effects of 
sex or significant interactions between fixed effects, therefore they are not reported in the tables and 
figures. All calculations were performed using R Statistical software (R Core Team, 2015).

Results

The applied experimental design allowed to select 90 rabbits for the research. Within each mating 
scheme, 30 rabbits were obtained, including 10 animals of each genotype (ins/ins, ins/del, and del/del). 
After slaughter, the carcasses of rabbits were visually inspected, and it was found that all animals with 
the del/del genotype at codon 248 in BCO2 gene had yellow fat, whereas rabbits with ins/ins and 
ins/del genotypes had white fat (Figure 2). The results were confirmed by colorimetric analysis. In the 
group referred to as “white fat”, the color coordinates of perirenal fat were as follows (mean ± standard 
deviation): L*: 72.70±3.69, a*: 5.61±1.27, b*: 16.87±3.40, and in the group classified as “yellow fat”: 
L*: 60.82±4.25, a*: 8.14±1.11, and b*: 31.13±2.70.

All crosses with the del/del genotype had higher concentrations of lutein than rabbits with ins/del and 
ins/ins genotypes (Table 2). No significant differences in lutein levels were found between the latter 
genetic groups. The BCO2 genotype had no influence on the levels of β-carotene, retinol, or α-tocopherol.

In all three interbreed crosses, highly significant differences were found in lutein concentrations 
between rabbits with the del/del genotype vs. ins/del and ins/ins genotypes, whereas no differences in 
lutein content were noted between animals with ins/del and ins/ins genotypes (Table 3). In all mating 
schemes, β-carotene content was higher in rabbits with the del/del genotype than in those with the 
ins/ins genotype; β-carotene content was also higher in del/del NZR × FG and NZR × TW rabbits than 
in those with the ins/del genotype. In NZR × TW crosses, α-tocopherol concentrations were higher in 
rabbits with the del/del genotype than in those with other genotypes.

The effect of the BCO2 genotype on the concentrations of the examined micronutrients was more 
pronounced and allowed to get more statistical power when all 90 samples were analyzed, irrespective 
of particular crosses (Figures 3 and 4 for the liver and adipose tissue, respectively).
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ins - gene variant without AAT-deletion at codon 248 of the BCO2 gene; del - gene variant with the deletion. 
Means with different uppercase letters differ significantly at P<0.01.

Figure 3 - Selected compounds (μg/g) in the liver of rabbits (medians, 25th and 75th percentiles, and adjacent and 
outside values).
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ins - gene variant without AAT-deletion at codon 248 of the BCO2 gene; del - gene variant with the deletion.

Figure 2 - Typical white- and yellow-fat phenotypes of rabbits associated with ins/ins or ins/del vs. del/del 
genotype at codon 248 of the BCO2 gene.
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Lutein concentrations were higher in homozygous del/del rabbits than in heterozygous ins/del and 
homozygous ins/ins individuals (medians 2.76, 0.67, and 0.57, respectively) (Figure 3). No significant 
differences in the levels of β-carotene, retinol, or α-tocopherol were found between the groups.

Differences in the concentrations of lutein, β-carotene, and α-tocopherol were found between the 
del/del groups vs. ins/del and ins/ins groups, and the respective medians were 3.62, 0.27, and 0.23; 
0.26, 0.16, and 0.13; and 3.93, 2.69, and 2.61 (Figure 4). Unlike in the liver, lutein levels in adipose 
tissue were always higher in rabbits with the del/del genotype than in those with ins/del and ins/ins 
genotypes. The levels of β-carotene and α-tocopherol were lower in some individuals with the del/del 
genotype than in some individuals with ins/del and ins/ins genotypes.

Discussion

This is the first study to investigate the relationships between genotypes associated with the AAT 
in-frame deletion in the BCO2 gene and the presence of biologically active compounds in selected tissues 
of rabbits. This is also the first study of yellow fat performed on crossbred rabbits. There are three 
arguments to support the hypothesis that the AAT in-frame deletion in the BCO2 gene determines the 
presence of yellow fat in rabbits. Firstly, in all yellow-fat rabbits of three unrelated pure breeds (NZR, FG, 
and TW), this mutation was homozygous. Secondly, when purebred rabbits with the ins/del genotype 
at codon 248 were used for crossing, all crossbred rabbits with the del/del genotype had yellow fat, 

ins - gene variant without AAT-deletion at codon 248 of the BCO2 gene; del - gene variant with the deletion.
Means with different uppercase letters differ significantly at P<0.01.

Figure 4 - Selected compounds (μg/g) in the perirenal fat of rabbits (medians, 25th and 75th percentiles, and 
adjacent and outside values).
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whereas all animals with ins/del and ins/ins genotypes had white fat, which was determined by a 
visual assessment (Figure 2) and confirmed by reflectance colorimetry. Thirdly, lutein concentrations 
in perirenal fat were always higher in homozygous rabbits carrying the AAT in-frame deletion than in 
the remaining individuals (Figure 4). 

Xanthophylls and, to a much lesser extent, carotenes are responsible for the yellow color of fat 
(Bonet et al., 2015; Strychalski et al., 2016). The median value for lutein concentrations in fat reached 
3.62 μg/g in homozygous del/del rabbits, and it was over 13-fold higher than in rabbits with ins/del and 
ins/ins genotypes (0.27 and 0.23 μg/g, respectively). The median values for β-carotene concentrations 
in fat were 0.26, 0.16, and 0.13 μg/g, respectively, for del/del, ins/del, and ins/ins rabbits. The median 
noted in homozygous rabbits with the deletion was approximately two-fold higher than in the 
remaining animals.

Table 2 - Selected compounds (μg/g) in the liver of rabbits (mean±SD)
n Lutein β-carotene Retinol α-tocopherol

NZR × FG
ins/ins 10 0.75±0.47B 0.08±0.17 88.10±31.57 3.68±1.56
ins/del 10 1.07±1.04B 0.08±0.11 83.23±31.13 4.27±2.07
del/del 10 3.25±1.60A 0.19±0.19 101.59±40.19 4.31±2.10
P-value <0.001 0.186 0.478 0.721

NZR × TW
ins/ins 10 0.91±0.92B 0.05±0.06 94.15±32.36 4.31±2.29
ins/del 10 1.17±0.91B 0.06±0.05 106.21±41.59 4.81±2.17
del/del 10 2.82±1.50A 0.08±0.08 105.70±49.19 5.00±2.33
P-value 0.002 0.555 0.767 0.783

FG × TW
ins/ins 10 0.58±0.56B 0.06±0.08 81.73±36.59 4.63±1.43
ins/del 10 0.63±0.55B 0.06±0.06 88.63±41.88 3.94±1.06
del/del 10 2.51±0.70A 0.05±0.05 91.07±29.84 4.02±2.35
P-value <0.001 0.847 0.839 0.619
NZR - New Zealand Red rabbits; FG - Flemish Giant rabbits; TW - Termond White rabbits; ins - gene variant without AAT-deletion at codon 248 
of the BCO2 gene; del - gene variant with the deletion; SD - standard deviation.
Means within a column followed by different uppercase letters differ significantly at P<0.01.

Table 3 - Selected compounds (μg/g) in the perirenal fat of rabbits (mean±SD)
n Lutein β-carotene Retinol α-tocopherol

NZR × FG
ins/ins 10 0.33±0.36B 0.13±0.09B 11.58±5.17 2.79±2.01
ins/del 10 0.38±0.31B 0.16±0.09b 12.60±7.28 2.86±1.41
del/del 10 3.62±1.17A 0.28±0.13Aa 15.61±7.73 4.48±1.72
P-value <0.001 0.009 0.402 0.063

NZR × TW
ins/ins 10 0.40±0.32B 0.15±0.07B 11.99±7.53 2.86±1.54b
ins/del 10 0.44±0.41B 0.20±0.10b 12.40±5.78 2.98±1.77b
del/del 10 3.96±1.06A 0.31±0.11Aa 15.17±8.36 4.79±1.96a
P-value <0.001 0.002 0.577 0.036

FG × TW
ins/ins 10 0.37±0.45B 0.13±0.08b 10.65±4.35 3.28±2.28
ins/del 10 0.43±0.43B 0.15±0.08 10.94±4.24 3.30±1.65
del/del 10 4.22±1.46A 0.23±0.10a 11.98±4.07 4.56±2.48
P-value <0.001 0.030 0.761 0.333
NZR - New Zealand Red rabbits; FG - Flemish Giant rabbits; TW - Termond White rabbits; ins - gene variant without AAT-deletion at codon 248 
of the BCO2 gene; del - gene variant with the deletion; SD - standard deviation.
Means within a column followed by different letters differ significantly: lowercase at P<0.05 and uppercase at P<0.01.
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In sheep, similarly to rabbits, the presence of yellow fat is also associated with the storage of dietary 
carotenoids, mostly xanthophylls. In yellow-fat New Zealand sheep, the carotenoid content of perirenal 
fat ranged from 2.93 µg/g in lambs to 8.64 µg/g in wethers (Kirton et al., 1975). In yellow-fat Norwegian 
sheep, the carotenoid content of perirenal fat was 2.20 μg/g (Karijord, 1978). These differences may 
be related to the age of animals and the carotenoid content of their diets. The group of xanthophylls 
includes lutein, zeaxanthin, β-cryptoxanthin, capsantin, astaxanthin, and fucoxanthin. Crane and Clare 
(1975) found that yellow-fat sheep accumulate mostly lutein, a xanthophyll present in large quantities 
in green plants. Our study shows that, in adipose tissue of yellow-fat rabbits, large amounts of lutein are 
deposited. However, we did not search for wider array of xanthophylls. Furthermore, it is still unknown 
how the dietary carotenoids are chemically modified in rabbits. 

Mice, for example, oxidize the 3-hydroxy groups of lutein and zeaxanthin (Amengual et al., 2011; 
Palczewski et al., 2016). Unlike in sheep and rabbits, a deleterious mutation in the bovine BCO2 gene, 
W80X, increases the levels of β-carotene but not of xanthophylls in adipose tissue, which becomes 
more reddish. Lower vitamin A levels in the liver were also reported in cattle. However, the W80X 
mutation only partially explains genetic variation in fat color in cattle (Berry et al., 2009). The fat color 
trait has also been found to be associated with polymorphism in the bovine RDHE2 (epidermal retinol 
dehydrogenase 2) gene, and other QTL are being identified (Tian et al., 2012).

In 160-day-old backcrossed yellow-fat NZR rabbits fed diets containing 82.41 mg/kg of lutein and 
24.53 mg/kg of β-carotene, the concentrations of lutein and β-carotene in fat were 5.01 μg/g and 
1.63 μg/g, respectively. The noted values were 13- and three-fold higher, respectively, than those 
determined in white-fat rabbits (Strychalski et al., 2016). In the present study, the levels of lutein and 
β-carotene in the fat of rabbits were generally lower, which could result from their lower dietary content 
and a shorter fattening period (140 d). However, a similar relationship between the levels of lutein and 
β-carotene was noted in yellow-fat and white-fat rabbits. This is consistent with the observation that 
the expression and activities of BCO1 and BCO2 enzymes are complementary. Most of the absorbed 
β-carotene is cleaved by BCO1, whereas the rest can be cleaved by BCO2 or accumulated in adipose 
tissue (Lietz et al., 2010). Thus, in the case of functional impairment of BCO2, an increase in xanthophyll 
concentrations should be accompanied by an increase in β-carotene levels. The above was observed in 
each mating scheme (Table 3) and across all groups (Figure 4).

Since β-carotene is a precursor of vitamin A, its greater accumulation in the body can stimulate the 
production of vitamin A and its storage in adipose tissue. Moreover, β-carotene can be used instead 
of vitamin A – it has been reported that the activity of 12 µg of β-carotene is comparable with that of 
1 µg of vitamin A (Weber and Grune, 2012). In a previous experiment, retinol levels were higher in 
yellow-fat rabbits than in white-fat rabbits – 53.99 vs. 36.01 µg/g (Strychalski et al., 2016). However, 
in the present study, no significant differences in retinol concentrations in fat were found between the 
groups (median values of 10.76 to 13.31 µg/g). 

Retinol levels have been rarely analyzed in rabbits. In comparison with our results, Yap et al. (1997) 
reported considerably lower retinol concentrations in the liver and fat of rabbits (0.30-1.15 µg/g 
and 0.01-0.07 µg/g, respectively). In a study by Zanutto et al. (2003), retinol levels in the liver of 
rabbits ranged from 2.01 to 54.19 µg/g. Both cited studies investigated the effect of β-carotene 
levels in experimental diets on the concentrations of several forms of vitamin A in rabbit tissues. 
Commercial diets are often supplemented with vitamin and mineral premixes that may contain up 
to 1,000,000 IU/kg of vitamin A (Gugołek et al., 2015). The addition of 1% of the premix to the 
diet corresponds to 10,000 IU of vitamin A per kg of feed. In the present experiment, 1 kg of feed 
contained 9,174 IU of vitamin A.

As expected, average lutein levels in the liver were higher in yellow-fat rabbits than in white-fat rabbits, 
because the former were unable to break down this xanthophyll. A similar observation was made in 
backcrossed NZR rabbits (Strychalski et al., 2016). However, in both experiments, hepatic β-carotene 
levels were comparable in yellow-fat and white-fat rabbits. In view of the fact that β-carotene levels in 
perirenal fat were approximately six- (Strychalski et al., 2016) and two-fold higher (present experiment) 
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in yellow-fat rabbits than in white-fat rabbits, the above similarities seem surprising. However, this 
provides further evidence that mutation in the BCO2 gene in rabbits directly affects xanthophyll 
metabolism and indirectly influences β-carotene metabolism. It is worth mentioning that, similar to 
rabbits, no significant differences in hepatic β-carotene levels were observed between wild type and 
BCO2-deficient mice, either (Amengual et al., 2013).

Apart from retinol, we also measured the levels of α-tocopherol, because both vitamins A and E are 
non-enzymatic components of the antioxidant defense system (Zwolińska et al., 2006). In the previous 
experiment, we observed that the concentrations of retinol and α-tocopherol in fat of yellow-fat rabbits 
increased, compared with white-fat rabbits (Strychalski et al., 2016). Therefore, it seems surprising 
that in the present study, an increase in α-tocopherol concentrations in the perirenal fat of yellow-fat 
rabbits was not accompanied by an increase in retinol levels (Figure 4). The relationship between 
vitamin A and vitamin E levels in animals remains insufficiently researched; however, as demonstrated 
by Napoli et al. (1984) on rats, α-tocopherol may play a role in tissue retinol homeostasis.

Experimental rabbits were fed commercial complete diets. They were slaughtered at 140 days of 
age to reveal the genetically determined differences in levels of carotenoids. For economic reasons, 
commercially bred hybrid rabbits (e.g., ZiKa and Hyplus) are slaughtered before 90 days of age 
(Dänicke at al., 2004; Gugołek et al., 2017), which could be a period too short for carotenoids to reach 
satisfactory levels in animal tissues. To date, conventional and organic farming systems have not yet 
been replaced by commercial rabbit breeding. On many small backyard farms, animals are fed fresh 
green forage, which has higher carotenoid content than commercial complete diets (Perry et al., 
2009), and the rearing period is longer, particularly in large rabbit breeds such as the widely used 
FG (Strychalski et al., 2014). Further research should focus on determining the rate of carotenoid 
accumulation in the fat of rabbits with various genotypes at codon 248 of the BCO2 gene, in view of 
different carotenoid concentrations in feed.

Conclusions

Polymorphism BCO2 differentiates lutein content in the liver and the concentrations of lutein, 
β-carotene, and α-tocopherol in perirenal fat in various crossbred rabbits. Lutein concentration in fat 
is over 13-fold higher in rabbits carrying a homozygous AAT-deletion than in the remaining animals. 
A codon deletion in the BCO2 gene also contributes to an increase in concentrations of β-carotene and 
α-tocopherol in the adipose tissue of rabbits. However, no differences are observed in the content of  
the analyzed components between heterozygous and homozygous rabbits without the deletion.
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